median |
Functions | |
template<typename T , typename R > | |
const T & | median (const T &a, const T &b, const T &c, R r) |
template<typename T > | |
T & | median (T &a, T &b, T &c) |
template<typename T > | |
const T & | median (const T &a, const T &b, const T &c) |
template<typename T , typename R > | |
T & | median (T &a, T &b, T &c, R r) |
Detailed Description
As with adobe::min and adobe::max, adobe::median is a select algorithm. The median algorithm returns the second of three arguments. The algorithm is stable, which is to say that if the arguments are in non-decresing order then the identity of the returned element will be the second identity of the second argument.
Function Documentation
const T& adobe::median | ( | const T & | a, |
const T & | b, | ||
const T & | c, | ||
R | r | ||
) |
median implementation
Definition at line 39 of file median.hpp.
T& adobe::median | ( | T & | a, |
T & | b, | ||
T & | c | ||
) |
median implementation
Definition at line 63 of file median.hpp.
const T& adobe::median | ( | const T & | a, |
const T & | b, | ||
const T & | c | ||
) |
median implementation
Definition at line 55 of file median.hpp.
T& adobe::median | ( | T & | a, |
T & | b, | ||
T & | c, | ||
R | r | ||
) |
median implementation
Definition at line 47 of file median.hpp.