
GIL 2.0 Changes
This document outlines the more significant changes in GIL introduced in version 2.0

Overall changes:

Added deprecated.hpp - a file that maps many of the deprecated names to current ones. Including it
will help porting your code to GIL 2.0. After porting to GIL 2.0, however, make sure that your code works
when this file is not included.

File structure:

 - Directories follow the boost convention
 - Removed (flattened) the 'core' directory
 - Different models are usually now split in separate files
 - Renamed some files to be more consistent
 - Renamed classes, functions and template arguments with longer but clearer and more consistent
names.
- Now compiles with GCC 4.1.1.

Changes in image, image_view, any_image and any_image_view: There are no longer global
functions get_width(), get_height(), get_dimensions(), num_channels(). Use class
methods width(), height(), dimensions() instead.

Changes in models of pixel, pixel iterator, pixel locator, image view and image:

There used to be different ways of getting to a pixel, channel, color space, etc. of an image view, pixel,
locator, iterator and image. Some classes were using traits, other - member typedefs. In GIL 2.0 all pixel-
based GIL constructs (pixels, pixel iterators, locators, image views and images) model
PixelBasedConcept, which means they provide the following metafunctions:

color_space_type
channel_mapping_type
is_planar
num_channels

And for homogeneous constructs we also have:

channel_type

Example:

BOOST_STATIC_ASSERT((boost::is_same<
 color_space_type<rgb8_image_t>::type,rgb_t>::value));
BOOST_STATIC_ASSERT((is_planar<rgb8_planar_view_t>::value==true));

To get the pixel type or pixel reference/const reference type of an image, image view, locator, and pixel,
use member typedefs value_type, reference and const_reference.

Changes in locator, image, image_view, any_image and any_image_view:

Removed dynamic_x_step_t, dynamic_y_step_t, dynamic_xy_step_t, and
dynamic_xy_step_transposed_t as member typedefs of locators and image views. Instead, there
are separate concepts HasDynamicXStepTypeConcept, HasDynamicYStepTypeConcept,
HasTransposedTypeConcept which all GIL provided locators, views and images model. Those
concepts require a metafunction to get the corresponding type. Analogously, all GIL pixel iterators
model HasDynamicXStepTypeConcept.

‐ Fixed some bugs in defining reference proxies. Also added the required swap function for reference
proxies, since the std::swap default does not do the right thing.

‐ Added metafunctions iterator_type_from_pixel and view_type_from_pixel to allow
creating standard iterators and views associated with a pixel type.

Documentation:

‐ The design guide and tutorial have been updated with GIL 2.0 changes. The syntax used in concepts
is updated with the latest concepts proposal (though there is still some syntax we are using that is
probably not legal)

‐ The Doxygen documentation has been updated and restructured, so that concepts and models are
closer in the browse tree.

Channel changes:

- The channel min/max value is now part of the channel traits. For all built-in types the channel range
equals the physical range (as determined by numeric_traits<T>::max()).

- Added scoped_channel_value, a channel adaptor that changes the operational range of a channel.
bits32f is defined as a float with range 0.0 to 1.0

- Added packed_channel_value, packed_channel_reference and
packed_dynamic_channel_reference - models of channels operating on bit ranges. (see below for
an example)

- Added support for channel_convert between any of the GIL provided channel types. The operation is
also consistent - conversion is done as a linear mapping that maps the min/max to the min/max

- Added a comprehensive regression test for channels

Pixel changes:

- Major redesign of pixel-level constructs. Got rid of the channel accessors. color_base is renamed to
homogeneous_color_base and is defined once, not for each color space. In general, the work needed
to define a new color space is very minimal. Here is all you need to create an RGB color space with RGB
and BGR ordering:

// create channel names
struct red_t {};
struct green_t {};
struct blue_t {};

// create a color space

typedef mpl::vector3<red_t,green_t,blue_t> rgb_t;

// create layouts (color space with associated channel ordering)
typedef layout<rgb_t> rgb_layout_t;
typedef layout<rgb_t, mpl::vector3_c<int,2,1,0> > bgr_layout_t;

- As the example shows, the color space now only specifies the set of channels. Their ordering in memory
is specified by a layout. pixel is now templated over the channel value and layout:

typedef pixel<bits8, bgr_layout_t> bgr8_pixel_t;

- Color base is a first-class concept. Think of color base as a bundle of color elements. A pixel is a color
base whose color elements are channels. A planar pixel iterator is a color base whose elements are
channel iterators. A planar pixel reference proxy is a color base whose elements are channel references.
A planar image can be represented as a color base whose elements are image planes, etc.

All former pixel-level algorithms and accessors now operate on color bases. The elements of a color base
can be accessed by physical or semantic index or by name. Example:

rgb8_pixel_t rgb8(1,2,3);
bgr8_pixel_t bgr8(rgb8);

// Physical, semantic and named element accessors.
assert(at_c<0>(bgr8) != at_c<0>(rgb8));
assert(semantic_at_c<0>(bgr8) == semantic_at_c<0>(rgb8));
assert(get_color(bgr8,blue_t()) == get_color(rgb8,blue_t()));

// Physical element accessor whose index is specified at run time.
// Only works for homogeneous bases
assert(dynamic_at_c(bgr8,0) != dynamic_at_c(rgb8,0));
assert(bgr8[0] != rgb8[0]); // for pixels only, operator[] does the same

- channel names can no longer be accessed as members of the pixel (my_pixel.gray = 0). Use
get_color instead, as shown above.

Renamed:

FROM TO
equal_channels static_equal
copy_channels static_copy
fill_channels static_fill
generate_channels static_generate
for_each_channel static_for_each
transform_channels static_transform
min_channel static_min
max_channel static_max
channel at_c
semantic_channel semantic_at_c
get_nth_channel dynamic_at_c
planar_ptr planar_pixel_iterator
planar_ref planar_pixel_reference
PixelConcept HomogeneousPixelConcept
HeterogeneousPixelConcept PixelConcept

- added metafunctions to get the k-th element of a color base (or its reference):

kth_semantic_element_type
kth_semantic_element_reference_type
kth_semantic_element_const_reference_type

color_element_type
color_element_reference_type
color_element_const_reference_type

element_type
element_reference_type
element_const_reference_type

Example:

kth_semantic_element_type<rgb8_pixel_t,1>::type green =
semantic_at_c<1>(my_rgb);

my_pixel::num_channels is no longer available. To get the number of elements of a color base use
the metafunction size:

BOOST_STATIC_ASSERT(gil::size<rgb8_pixel_t>::value == 3);

- Added heterogeneous_packed_pixel, a model of a pixel whose channels are bit ranges. For
example, here is how to define a 16-bit RGB pixel in the '565' format:

typedef const packed_channel_reference<uint16_t, 0,5,true> rgb565_channel0_t;
typedef const packed_channel_reference<uint16_t, 5,6,true> rgb565_channel1_t;
typedef const packed_channel_reference<uint16_t,11,5,true> rgb565_channel2_t;

typedef mpl::vector3<rgb565_channel0_t,rgb565_channel1_t,rgb565_channel2_t>
 rgb565_channels_t;

typedef heterogeneous_packed_pixel<uint16_t,rgb565_channels_t,rgb_layout_t>
 rgb565_pixel_t;

- most color base algorithms now can take heterogeneous pixels (i.e. pixels each channel of which may
have a different type). color_convert can operate on heterogeneous pixels with the exception of
to/from RGBA.

- got rid of pixel_traits. Use nested typedefs value_type, reference and const_reference or
metafunctions implementing PixelBasedConcept (see below).

- No more LAB and HSB color space, because there is no color conversion support implemented for
these. New color spaces can be added with just a few lines of code, as shown above.

- added a comprehensive regression test for pixels

Pixel iterator changes:

- got rid of pixel_iterator_traits. Use std::iterator_traits, PixelBasedConcept
metafunctions or the following new metafunctions for pixel iterators:

const_iterator_type
iterator_is_mutable
is_iterator_adaptor

In addition, iterator adaptors have these new metafunctions:

iterator_adaptor_get_base
iterator_adaptor_rebind

- renamed pixel_image_iterator to iterator_from_2d

Pixel locator changes:

Renamed is_contiguous to is_1d_traversable.

Renamed membased_2d_locator to byte_addressable_2d_locator.

Image view changes:

- added algorithms uninitialized_fill_pixels and uninitialized_copy_pixels.

- added method is_1d_traversable.

Image changes:

- Images don't allow for getting access to the pixels - only through views. Got rid of the ability to directly
navigate the pixels of an image. So image no longer models STL’s random access container concept

- The class image is no longer templated over the image view. It is now templated over pixel value and
a Boolean indicating if the image is planar:

typedef image<rgb8_pixel_t, true> rgb8_planar_image_t;

- Added support for creating images with a new value to fill.
- Images now invoke the default constructor of the pixels they allocate.
- Renamed resize_clobber_image to Image::recreate. Also allowed for optionally specifying the

initial value.

Dynamic image changes:

- No cross_vector_image_types and cross_vector_image_view_types. Instead, just create a
vector to explicitly enumerate your types. This resulted in removing a lot of MPL related code and
simplified significantly the design.

