
GIL 2.0 to GIL 2.1 Changes 

This document outlines the more significant changes in GIL introduced in version 2.1 

 

Support for non-byte-aligned images: 

Added support for non-byte-aligned images. Example of reading an image and writing it back transposed 
in RGB121 (4-bit per pixel) format: 

bgr8_image_t img; 

jpeg_read_image("test.jpg",img); 

 

typedef bit_aligned_image3_type<1,2,1, rgb_layout_t>::type rgb121_image_t; 

rgb121_image_t rgb121_img(img.height(),img.width()); 

 

copy_and_convert_pixels(const_view(img),transposed_view(view(rgb121_img))); 

 

// Color convert to rgb8 upon save  

// (i/o does not yet support non-byte-aligned) 

jpeg_write_view("out.jpg", 

                color_converted_view<rgb8_pixel_t>(const_view(rgb121_img))); 

 

To support bit distance, we are using the same classes that were providing byte distance 

(byte_addressible_step_iterator, byte_addressible_2d_locator, etc.) except that now 

they operate on memory units instead of bytes. A memory unit can currently be either a byte or a bit. 
Thus all byte-related names are changed to memory-unit related: 

FROM TO 

ByteAdvancableIteratorConcept      MemoryBasedIteratorConcept 
 

byte_addressable_step_iterator 

 

memory_based_step_iterator 

byte_addressable_2d_locator 

byte_advance 

byte_advanced 

byte_distance 

byte_step 

memory_based_2d_locator 

memunit_advance 

memunit_advanced 

memunit_distance 

memunit_step 

byte_to_memunit 

Locator::row_bytes()    Locator::row_size() 

Locator::pix_bytestep()    Locator::pixel_size() 

 

Notice that there is a new metafunction required by the MemoryBasedIteratorConcept, 

byte_to_memunit, which specifies the number of bits per memory unit (either 1 or 8). 

References and iterators over bit-aligned pixels are implemented using two new classes, 
bit_aligned_pixel_reference and bit_aligned_pixel_iterator. The memory unit of bit 
aligned pixel iterators is a bit, i.e. byte_to_unit< bit_aligned_pixel_iterator<T> >::value 
== 8. 

The value_type of a bit-aligned image is a packed_pixel. (There is a strong analogy with the way 

interleaved and planar images are implemented, with packed_pixel corresponding to pixel, 

bit_aligned_pixel_reference corresponding to planar_pixel_reference and 

bit_aligned_pixel_iterator corresponding to planar_pixel_iterator) 



Added new metafunctions: 

1. For constructing a homogeneous pixel value from elements: 

template <typename Channel, typename Layout>  

struct pixel_value_type { 

    typedef … type;  

}; 

2. For constructing a homogeneous packed pixel from elements. A packed pixel is a pixel that is byte-
aligned but whose channels may not be byte aligned: 

template <typename BitField, typename ChannelBitSizeVector, typename Layout> 

struct packed_pixel_type { 

    typedef … type;  

}; 

Where ChannelBitSizeVector  is an MPL integral vector of bit sizes to all channels. Example: 

typedef packed_pixel_type<uint16_t, mpl::vector3_c<unsigned,5,6,5>,                                 

                                       rgb_layout_t>::type rgb565_pixel_t; 

 

3. For constructing packed images. A packed image is an image whose value_type is a packed pixel: 

template <typename BitField, typename ChannelBitSizeVector, typename Layout,      

          typename Alloc=std::allocator<unsigned char> > 

struct packed_image_type { 

    typedef … type; 

};  

There are also helper metafunctions for constructing packed images of 1 through 5 channels by taking 

the channels directly. Example: 

typedef packed_image3_type<uint16_t,7,7,2,bgr_layout_t>::type bgr772_image_t; 

 

Metafunctions for constructing bit-aligned images. A bit-aligned image is an image whose pixels may not 

be byte-aligned (such as an RGB222 image): 

template <typename ChannelBitSizeVector, typename Layout,  

          typename Alloc=std::allocator<unsigned char> > 

struct bit_aligned_image_type { typedef … type; }; 

 
There are also helper metafunctions for constructing packed images of 1 through 5 channels by taking 

the channels directly. Example: 

typedef bit_aligned_image3_type<1,2,1, rgb_layout_t>::type rgb121_image_t; 

  

Added support for getting the raw memory from image views: 

It is now more convenient to get the raw pointer to the beginning of the memory associated with a 
homogeneous  image view by using the following functions:  



template <typename HomogeneousView> 

typename detail::channel_pointer_type<HomogeneousView>::type 

interleaved_view_get_raw_data(const HomogeneousView& view) {…} 

 

template <typename HomogeneousView> 

typename detail::channel_pointer_type<HomogeneousView>::type 

planar_view_get_raw_data(const HomogeneousView& view, int plane_index) {…} 

 

Example: 

rgb8_image_t rgb8(100,100); 

unsigned char* data=interleaved_view_get_raw_data(view(rgb8)); 

const unsigned char* cdata=interleaved_view_get_raw_data(const_view(rgb8)); 

 

rgb16s_planar_image_t rgb8(100,100); 

short* second_plane=planar_view_get_raw_data(view(rgb8),1); 

const short* csecond_plane=planar_view_get_raw_data(const_view(rgb8),1); 

  

Other changes: 

- Renamed heterogeneous_packed_pixel to packed_pixel. 

- Fixed histogram regression tests 

- Improved channel_convert (it is faster by switching to floating point math only if necessary). 

Also fixed a roundoff bug in the conversion. 

- Simplified packed_channel_reference and packed_dynamic_channel_reference by 
removing the BitField parameter (it is now computed automatically). 

 
 
 


