GIL 2.0 to GIL 2.1 Changes

This document outlines the more significant changes in GIL introduced in version 2.1

Support for non-byte-aligned images:

Added support for non-byte-aligned images. Example of reading an image and writing it back transposed
in RGB121 (4-bit per pixel) format:

bgr8 image t img;
jpeg _read image ("test.jpg",img);

typedef bit aligned image3 type<l,2,1, rgb layout t>::type rgbl2l image t;
rgbl21 image t rgbl2l img(img.height(),img.width());

copy and convert pixels(const view(img),transposed view(view(rgbl2l img)));

// Color convert to rgb8 upon save
// (i/o does not yet support non-byte-aligned)
jpeg write view("out.jpg",
color converted view<rgb8 pixel t>(const view(rgbl2l img)));

To support bit distance, we are using the same classes that were providing byte distance

(byte addressible step iterator,byte addressible 2d locator, etc.) except that now
they operate on memory units instead of bytes. A memory unit can currently be either a byte or a bit.
Thus all byte-related names are changed to memory-unit related:

FROM TO
ByteAdvancableIteratorConcept MemoryBasedIteratorConcept

byte addressable step iterator memory based step iterator

byte addressable 2d locator memory based 2d locator
byte advance memunit advance
byte advanced memunit advanced
byte distance memunit distance
byte step memunit step

byte to memunit
Locator::row_bytes() Locator::row_size()
Locator::pix bytestep () Locator::pixel size()

Notice that there is a new metafunction required by the MemoryBasedIteratorConcept,
byte to memunit, which specifies the number of bits per memory unit (either 1 or 8).

References and iterators over bit-aligned pixels are implemented using two new classes,
bit aligned pixel reference and bit aligned pixel iterator. The memory unit of bit

aligned pixel iterators is a bit, i.e. byte to unit< bit aligned pixel iterator<T> >::value
== 8.

The value_type of a bit-aligned image is a packed_pixel. (There is a strong analogy with the way
interleaved and planar images are implemented, with packed pixel corresponding to pixel,
bit aligned pixel reference corresponding to planar pixel reference and

bit aligned pixel iterator correspondingto planar pixel iterator)



Added new metafunctions:
1. For constructing a homogeneous pixel value from elements:

template <typename Channel, typename Layout>
struct pixel value type {

typedef .. type;
}i

2. For constructing a homogeneous packed pixel from elements. A packed pixel is a pixel that is byte-
aligned but whose channels may not be byte aligned:

template <typename BitField, typename ChannelBitSizeVector, typename Layout>
struct packed pixel type {

typedef .. type;
}i

Where ChannelBitSizeVector isan MPL integral vector of bit sizes to all channels. Example:

typedef packed pixel type<uintl6 t, mpl::vector3 c<unsigned,5,6,5>,
rgb layout t>::type rgb565 pixel t;

3. For constructing packed images. A packed image is an image whose value_type is a packed pixel:

template <typename BitField, typename ChannelBitSizeVector, typename Layout,
typename Alloc=std::allocator<unsigned char> >
struct packed image type {
typedef .. type;
}i

There are also helper metafunctions for constructing packed images of 1 through 5 channels by taking
the channels directly. Example:

typedef packed image3 type<uintl6 t,7,7,2,bgr layout t>::type bgr772 image t;

Metafunctions for constructing bit-aligned images. A bit-aligned image is an image whose pixels may not
be byte-aligned (such as an RGB222 image):

template <typename ChannelBitSizeVector, typename Layout,

typename Alloc=std::allocator<unsigned char> >
struct bit aligned image type { typedef .. type; };

There are also helper metafunctions for constructing packed images of 1 through 5 channels by taking
the channels directly. Example:

typedef bit aligned image3 type<l,2,1, rgb layout t>::type rgbl2l image t;

Added support for getting the raw memory from image views:

It is now more convenient to get the raw pointer to the beginning of the memory associated with a
homogeneous image view by using the following functions:



template <typename HomogeneousView>
typename detail::channel pointer type<HomogeneousView>::type
interleaved view get raw data(const HomogeneousViewé& view) {..}

template <typename HomogeneousView>
typename detail::channel pointer type<HomogeneousView>::type
planar view get raw data(const HomogeneousView& view, int plane index) {..}

Example:

rgb8 image t rgb8(100,100);
unsigned char* data=interleaved view get raw data(view(rgb8)):;
const unsigned char* cdata=interleaved view get raw data(const view(rgb8));

rgbl6s planar image t rgb8(100,100);
short* second plane=planar view get raw data(view(rgb8),1);
const short* csecond plane=planar view get raw data(const view(rgb8),1);

Other changes:

- Renamed heterogeneous packed pixel to packed pixel.

- Fixed histogram regression tests

- Improved channel convert (itis faster by switching to floating point math only if necessary).
Also fixed a roundoff bug in the conversion.

- Simplified packed channel reference and packed dynamic channel reference by
removing the BitField parameter (it is now computed automatically).



